Кто изобрел первый электродвигатель

Содержание

Электродвигатели

В некоторых режимах работы электропривода электродвигатель осуществляет обратное преобразование энергии, то есть работает в режиме электрического генератора.

По виду создаваемого механического движения электродвигатели бывают вращающиеся, линейные и др. Под электродвигателем чаще всего подразумевается вращающий электродвигатель, так как он получил наибольшее применение.

Областью науки и техники изучающей электрические машины является – электромеханика. Принято считать, что ее история начинается с 1821 года, когда был создан первый электродвигатель М.Фарадея.

Устройство электродвигателя переменного тока

Электрические двигатели – это силовые машины, применяющиеся для превращения электрической энергии в механическую. Общая классификация разделяет их по типу питающего тока на двигатели постоянного и переменного тока. В статье ниже рассматриваются электрические двигатели со спецификацией под переменный ток, их виды, отличительные характеристики и преимущества.

Для общей информации, рекомендуем прочитать нашу отдельную статью о принципах работы электродвигателей.

Электродвигатель переменного тока

История создания электродвигателя переменного тока

Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током.

Устройство и принцип работы асинхронного двигателя – советы электрика

Из истории электромобиля мы знаем, что первый электродвигатель появился раньше двигателя внутреннего сгорания. Как это было… Работы Андре-Мари Ампера, объединившие два разобщенных ранее явления — магнетизм и электричество, вдохновили другого гениального ученого — Майкла Фарадея. Открытия Ампера, Эрстеда и Араго побудили английского физика заняться вопросом о превращении магнитной и электрической энергии в механическую. В 1821 году поставленная задача была решена с помощью специального прибора, в котором было продемонстрировано явление непрерывного электромагнитного вращения. После удачного эксперимента Фарадей поставил себе новую задачу о превращении магнетизма в электричество. Явление, составляющее основу современной электроэнергетики, было открыто английским ученым лишь через десять лет. Оно было названо электромагнитной индукцией. Спустя 3 года русский физик Эмилий Ленц, обобщив проделанные Фарадеем опыты, сформулировал новый фундаментальный закон, дававший возможность безошибочно определить направление индуцированного тока.

Так называемый принцип обратимости был доказан Ленцем не только теоретически, но и экспериментально: катушка, при ее вращении между полюсами магнита, генерировала электрический ток, обратная реакция заключалась в том, что катушка начинала вращаться, если в нее посылали ток. Исследование английского физика и опыты русского академика сыграли решающую роль в истории электродвигателя и развитии всего электромашиностроения в целом.

Космические моторы. Главные разработки Валентина Глушко, известные на весь мир

2 сентября исполнилось 110 лет со дня рождения инженера, ученого и конструктора, занимавшегося разработкой ракетных двигателей и космических систем, — Валентина Петровича Глушко. При его непосредственном участии был разработан целый ряд двигателей, на которых до сегодняшнего дня летают космические носители “Союз” и “Протон”, а также межконтинентальная баллистическая ракета “Воевода”, которая известна на Западе как “Сатана”. ТАСС собрал главные изобретения знаменитого конструктора ракетно-космической техники.

Электрический двигатель

Якоби Борис Семенович Якоби Борис Семенович

Уже в 1821 году, знаменитый британский ученый Майкл Фарадей продемонстрировал принцип преобразования электромагнитным полем электрической энергии в механическую энергию. Установка состояли из подвешенного провода, которых окунался в ртуть. Магнит устанавливался посередине колбы с ртутью. При замыкании цепи, провод начинал вращение вокруг магнита, демонстрируя то, что вокруг провода, эл. током, образовывалось электрическое поле.

Эту модель двигателя часто демонстрировали в школах и университетах. Данный двигатель считается самым простым видом из всего класса электродвигателей. Впоследствии он получил продолжение в виде Колеса Барлова. Однако новое устройство носило лишь демонстрационный характер, поскольку вырабатываемые им мощности были слишком малы.

Ученые и изобретатели работали над двигателем с целью использования его в производственных нуждах. Все они стремились к тому, чтобы сердечник двигателя двигался в магнитном поле вращательно-поступательно, на манер поршня в цилиндре паровой машины. Русский изобретатель Б.С. Якоби сделал все гораздо проще. Принцип работы его двигателя заключался в попеременном притяжении и отталкивании электромагнитов. Часть электромагнитов были запитаны от гальванической батареи, и направление течения тока в них не менялась, а другая часть подключалась к батарее через коммутатор, благодаря которому изменялось направление течения тока через каждый оборот. Полярность электромагнитов менялась, и каждый из подвижных электромагнитов то притягивался, то отталкивался от соответствующего ему неподвижного электромагнита. Вал приходил в движение.

двигатель Якоби электродвигатель Бориса Якоби Изначально мощность двигателя была небольшой и составляла всего 15 Вт, после доработок, Якоби удалось довести мощность до 550 Вт.. 13 сентября 1838 году, лодка, оборудованная этим двигателем, плыла с 12 пассажирами по Неве, против течения, развивая при этом скорость в 3 км/ч. Двигатель был запитан от большой батареи, состоящей из 320 гальванических элементов. Мощность современных электрических двигателей превышает 55 кВт. По вопросом прибретения электрических двигателей смотрите здесь.

Электрический двигатель — принцип работы электродвигателя

Электрические двигатели предназначены для преобразования электрической энергии в механическую. Первые их прототипы были созданы в 19 веке, а сегодня эти устройства максимально интегрированы в жизнь современного человечества. Примеры их использования можно встретить в любой сфере жизнедеятельности: от общественного транспорта до домашней кофемолки.

Электрический двигатель

Кто придумал двигатель внутреннего сгорания? Ключевые фигуры

Более двух веков прогресс человечества неразрывно связан с различными машинами, особенно с транспортными средствами. Которые помогали быстро перемещать товары от поставщиков к потребителям. Те, кто придумал двигатель внутреннего сгорания (ДВС), внесли весомый вклад в развитие человеческой цивилизации. Поскольку автомобили, корабли и самолеты до сих пор остаются главным двигателем в истории человечества. Первым коммерчески успешным ДВС считается двигатель французского изобретателя из Бельгии Жана Этьена Ленуара.

Принцип преобразования энергии

Принцип работы электродвигателя любого типа заключается в использовании электромагнитной индукции, возникающей внутри устройства после подключения в сеть. Для того чтобы понять, как эта индукция создается и приводит элементы двигателя в движение, следует обратиться к школьному курсу физики, объясняющему поведение проводников в электромагнитном поле.

Итак, если мы погрузим проводник в виде обмотки, по которому движутся электрические заряды, в магнитное поле, он начнет вращаться вокруг своей оси. Это связано с тем, что заряды находятся под влиянием механической силы, изменяющей их положение на перпендикулярной магнитным силовым линиям плоскости. Можно сказать, что эта же сила действует на весь проводник.

Схема, представленная ниже, показывает токопроводящую рамку, находящуюся под напряжением, и два магнитных полюса, придающие ей вращательное движение.

Именно эта закономерность взаимодействия магнитного поля и токопроводящего контура с созданием электродвижущей силы лежит в основе функционирования электродвигателей всех типов. Для создания аналогичных условий в конструкцию устройства включают:

  • Ротор (обмотка) – подвижная часть машины, закрепленная на сердечнике и подшипниках вращения. Она исполняет роль токопроводящего вращательного контура.
  • Статор – неподвижный элемент, создающий магнитное поле, воздействующее на электрические заряды ротора.
  • Корпус статора. Оснащен посадочными гнездами с обоймами для подшипников ротора. Ротор размещается внутри статора.

Для представления конструкции электродвигателя можно создать принципиальную схему на основе предыдущей иллюстрации:

После включения данного устройства в сеть, по обмоткам ротора начинает идти ток, который под воздействием магнитного поля, возникающего на статоре, придает ротору вращение, передаваемое на крутящийся вал. Скорость вращения, мощность и другие рабочие показатели зависят от конструкции конкретного двигателя и параметров электрической сети.

Первый электрический реактивный двигатель

Под руководством Глушко был разработан первый в мире электротермический реактивный двигатель. Опытный образец был создан в СССР — в Газодинамической лаборатории в Ленинграде, которой заведовал Глушко, в 1929 году.

Просто космос

В двигателе в камеру сгорания устанавливались специальные проводники (из железа, палладия других металлов), на эти проводники подавались кратковременные, но мощные импульсы электрического тока с определенной частотой. Сам процесс назывался “электрическим взрывом” — при прохождении разряда проводники в прямом смысле разрушались, выделяя водород, который истекал из сопла двигателя и создавал тягу. Позже работы по этим двигателям были свернуты из-за низкой мощности.

Впервые в советской космической промышленности электрореактивные двигатели (ЭРД), но с иным принципом, были применены значительно позже — в 1964 году в космос был отправлен спутник “Зонд-2”, с шестью установленными плазменными двигателями ориентации.

В современной космической технике применяются различные ЭРД, например, ионный (ионизированный газ разгоняется в электрическом поле). Такие модели, как и первый двигатель Глушко, имеют малую тягу, но могут работать за счет низкого расхода рабочего тела чрезвычайно долго — до нескольких лет. В качестве маршевого ЭРД был, например, установлен на японском космическом аппарате “Хаябуса”, запущенном для изучения астероида Итокава. ЭРД широко применяются на спутниках в качестве двигателей коррекции траектории.

Второе название асинхронных машин

В ряде стран к асинхронным машинам причисляют также коллекторные машины. Второе название асинхронных машин — индукционные вследствие того, что ток в обмотке ротора индуцируется вращающимся полем статора. Асинхронные машины сегодня составляют большую часть электрических машин. В основном они применяются в качестве электродвигателей и являются основными преобразователями электрической энергии в механическую.

Краткая история создания

Опыт Фарадея

Впервые возможность превратить электричество в механическую энергию открыл британский ученый М.Фарадей еще в 1821 году. Его опыт с проводом, помещенным в ванну с ртутью, оснащенной магнитом, показал, что при подключении провода к источнику электроэнергии он начинает вращаться. Этот нехитрый опыт наверняка многие помнят по школе, правда, ртуть там заменяется безопасным рассолом. Следующим шагом в изучении этого феномена было создание униполярного двигателя – колеса Барлоу. Никакого полезного применения он так и не нашел, зато наглядно демонстрировал поведение заряженного проводника в магнитном поле.

На заре истории электродвигателей ученые пытались создать модель с сердечником, двигающимся в магнитном поле не по кругу, а возвратно-поступательно. Такой вариант был предложен, как альтернатива поршневым двигателям. Электродвигатель в привычном для нас виде впервые был создан в 1834 году русским ученым Б.С. Якоби. Именно он предложил идею использования вращающегося в магнитном поле якоря, и даже создал первый рабочий образец.

Первый асинхронный двигатель, в основе работы которого заложено вращающееся магнитное поле, появился в 1870 году. Авторами эффекта вращающегося магнитного поля независимо друг от друга стали два ученых: Г.Феррарис и Н. Тесла. Последнему принадлежит также идея создания бесколлекторного электродвигателя. По его чертежам были построены несколько электростанций с применением двухфазных двигателей переменного тока. Следующей более удачной разработкой оказался трехфазный двигатель, предложенный М.О. Доливо-Добровольским. Его первая действующая модель была запущена в 1888 году, после чего последовал ряд более совершенных двигателей. Этот русский ученый не только описал принцип действия трехфазного электродвигателя, но и изучал различные типы соединений фаз (треугольник и звезда), возможность использование разных напряжений тока. Именно он изобрел пусковые реостаты, трехфазные трансформаторы, разработал схемы подключения двигателей и генераторов.

Первый коммерческий успех

Двигатель Ленуара

В последующий период механики многих европейских стран пытались создать нормально работающий образец ДВС на светильном газе. Однако все эти усилия долгое время не приводили к появлению двигателя, который мог бы конкурировать по эффективности с паровой машиной.

Тем, кто придумал двигатель внутреннего сгорания, добившегося коммерческого успеха, стал бельгийский механик французского происхождения Жан Этьен Ленуар. Он первым решил воспламенять газовоздушную смесь посредством электрической искры. Возможно, такая идея пришла к нему, потому что инженер работал на гальваническом заводе. Однако успех пришел к нему не сразу. Первая модель проработала совсем немного и остановилась, потому что из-за большой температуры поршень расширился, и его заклинило в цилиндре. Ленуар дополнил свой ДВС водяной системой охлаждения. А после второго неудачного запуска и сконструировал систему смазки. К 1864 году он продал больше 1400 своих двигателей и разбогател.

Особенности электродвигателя переменного тока, его достоинства и недостатки

На сегодня электродвигатели являются одними из самых распространенных видов силовых установок, и тому есть немало причин. У них высокий КПД порядка 90%, а иногда и выше, довольно низкая себестоимость и простая конструкция, они не выделяют вредных веществ в процессе эксплуатации, дают возможность плавно менять скорость во время работы без использования дополнительных механизмов типа коробки передач, надежны и долговечны.

Среди недостатков всех типов электромоторов — отсутствие высокоемкостного аккумулятора электроэнергии для автономной работы.

Основное отличие электродвигателя переменного тока от его ближайшего родственника – электродвигателя постоянного тока – заключается в том, что первый питается переменным током. Если сравнивать их функциональные возможности, первый менее мощный, у него сложно регулировать скорость в широком диапазоне, он имеет меньший КПД.

Если же сравнивать асинхронный и синхронный электродвигатель переменного тока, то первый имеет более простую конструкцию и лишен «слабого звена» — графитовых щеток. Именно они обычно первыми выходят из строя при поломке синхронных двигателей. Вместе с тем, у него сложно получить и регулировать постоянную скорость, которая зависит от нагрузки. Синхронные двигатели позволяют регулировать скорость вращения с помощью реостатов.

Достоинства и недостатки

  • Лёгкость в изготовлении.
  • Отсутствие механического контакта со статической частью машины.
  • Небольшой пусковой момент.
  • Значительный пусковой ток.

Первый двигатель в массовом производстве

Двигатель Отто

Среди тех, кто придумал двигатель внутреннего сгорания – немецкий инженер Николас Отто. Он усовершенствовал машину, работающую на светильном газе, и в 1864 году получил патент на свою модель ДВС. Которая была продана в количестве более 5000 штук.

В 1877 году Отто получил патент на двигатель с четырехтактным циклом. Этот принцип лежит и сейчас в основе работы большой части газовых и бензиновых двигателей. В течение следующих двадцати лет было выпущено более 42 000 таких ДВС. Однако использование светильного газа сильно сужало возможности их использования.

Двигатели для баллистических и космических ракет

С 1946 года Глушко был назначен главным конструктором ОКБ-456 в Химках (сейчас НПО “Энергомаш” — главный разработчик и производитель российских ракетных двигателей — прим. ТАСС). Здесь под его руководством созданы двигатели для первых советских баллистических ракет Р-1, Р-2 и Р-5.

В 1954–1957 годах коллектив ОКБ-456 разработал жидкостные ракетные двигатели РД-107, которые впоследствии будут устанавливаться на знаменитую ракету Р-7, сконструированную коллективом ОКБ-1 под руководством Королева, так называемую королевскую семерку. Это была первая в мире полноценная межконтинентальная баллистическая ракета с максимальной дальностью полета 8 тыс. км и одним термоядерным зарядом мощностью 3 мегатонны. Первый запуск Р-7 состоялся 15 мая 1957 года, на вооружение Ракетных войск стратегического назначения она была принята в январе 1960-го.

Жидкостный ракетный двигатель "РД-107" бокового блока ракеты-носителя "Восток" Черединцев Валентин/ТАСС

На базе Р-7 был создано целое семейство ракет космического назначения. В частности, знаменитый “Восток”, на котором 12 апреля 1961 года в космос отправился Юрий Гагарин. Модификации этой ракеты используются до сих пор — с грузовыми кораблями и спутниками в космос стартуют ракеты серии “Союз-2”, с пилотируемыми — “Союз-ФГ” (со следующего года запуски космонавтов будут переведены на “Союз-2”). До сих пор на этих ракетах используются модификации двигателей, разработанных Глушко: версии РД-107 для боковых и центрального блока первой ступени и варианты РД-108 — для второй ступени.

Также сотрудники ОКБ-456 под руководством Глушко создали двигатель РД-253, который с изменениями и сейчас используется в самой массовой серии советских и российских тяжелых грузовых ракет “Протон”. Последний вариант — “Протон-М” — использует на первой ступени шесть двигателей РД-276, которые являются глубокой модернизацией РД-253 Глушко.

"Сатане" на смену: почему утилизируют самые мощные ракеты России

Параллельно известный конструктор работал над двигателями для советских баллистических ракет, появившихся после Р-7. В частности, самая мощная на сегодняшний день и стоящая на вооружении РВСН тяжелая межконтинентальная ракета “Воевода” использует на первой ступени двигатель РД-264, разработанный при непосредственном участии Глушко.

Подключение к однофазным и трехфазным источникам питания

По типу питающей сети электродвигатели переменного тока классифицируют на одно- и трехфазные.

Подключение асинхронных однофазных двигателей осуществляет очень легко – для этого достаточно подвести к двум выходам на корпусе фазный и нулевой провод однофазной 220В сети. Синхронные двигатели тоже можно запитывать от сети данного типа, однако подключение немного сложнее – необходимо соединить обмотки ротора и статора так, чтобы их контакты однополюсного намагничивания были расположены напротив друг друга.

Подключение к трехфазной сети представляется несколько более сложным. В первую очередь, следует обратить внимание, что клеммная коробка содержит 6 выводов – по паре на каждую из трех обмоток. Во-вторых, это дает возможность использовать один из двух способов подключения («звезда» и «треугольник»). Неправильное подключение может привести в поломке двигатель от расплавления обмоток статора.

Главное функциональное отличие «звезды» и «треугольника» заключается в различном потреблении мощности, что сделано для возможности включения машины в трехфазные сети с различным линейным напряжением — 380В или 660В. В первом случае следует соединять обмотки по схеме «треугольник», а во втором – «звездой». Такое правило включения позволяет в обоих случаях иметь напряжение 380В на обмотках каждой фазы.

На панели подключения выводы обмоток располагаются таким образом, чтобы перемычки, используемых для включения, не перекрещивались между собой. Если коробка выводов двигателя содержит только три зажима, значит, он рассчитан для работы от одного напряжения, которое указано в технической документации, а обмотки соединены между собой внутри устройства.

Специальные электродвигатели

Серводвигатель

Первые эксперименты с электромагнитными устройствами

Электромеханика является относительно молодой, по историческим меркам, отраслью науки и техники.

1800, Вольта

Итальянский физик, химик и физиолог, Алессандро Вольта, первый в мире создал химический источник тока.

1820, Эрстед

Датский ученый, физик, Ханс Кристиан Эрстед, обнаружил на опыте отклоняющее действие тока на магнитную стрелку.

1821, Фарадей

Британский физик-экспериментатор и химик, Майкл Фарадей, опубликовал трактат “О некоторых новых электромагнитных движениях и о теории магнетизма”, где описал, как заставить намагниченную стрелку непрерывно вращаться вокруг одного из магнитных полюсов. Эта конструкция впервые реализовала непрерывное преобразование электрической энергии в механическую. Принято считать ее первым электродвигателем

1822, Ампер

Французский физик, Андре Мари Ампер, открыл магнитный эффект соленоида (катушки с током), откуда следовала идея эквивалентности соленоида постоянному магниту. Среди прочего Ампер предложил использовать железный сердечник, помещенный внутрь соленоида, для усиления магнитного поля. В 1820 году им был открыт закон Ампера.

1822, Барлоу

Английский физик и математик, Питер Барлоу, изобрел колесо Барлоу, по сути, униполярный электродвигатель.

1825, Араго

Французский физик и астроном, Доминик Франсуа Жан Араго, опубликовал опыт показывающий, что вращающийся медный диск заставляет вращаться магнитную стрелку, подвешенную над ним.

1825, Стёрджен

Британский физик, электротехник и изобретатель, Уильям Стёрджен, в 1825 изготовил первый электромагнит, который представлял из себя согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки.

1827, Йедлик

Венгерский физик и электротехник, Аньош Иштван Йедлик, изобрел первую в мире динамо-машину (генератор постоянного тока), однако практически не объявлял о своем изобретении до конца 1850-х годов.

1831, Фарадей

Английский физик, Майкл Фарадей, открыл электромагнитную индукцию, то есть явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Формулировка закона электромагнитной индукции.

1831, Генри

Американский физик, Джозеф Генри, независимо от Фарадея обнаружил взаимоиндукцию, но Фарадей раньше опубликовал свои результаты.

1832, Пикси

Француз, Ипполит Пикси, сконструировал первый генератор переменного тока. Устройство состояло из двух катушек индуктивности с железным сердечником напротив которых располагался вращающийся магнит подковообразной формы, который приводился в движение вращением рычага. Позже для получения постоянного пульсирующего тока к этому устройству был добавлен коммутатор.

1833, Стёрджен

Британский физик, Уильям Стёрджен, публично продемонстрировал электродвигатель на постоянном токе

в Марте 1833 года в Аделаидской галерее практической науки в Лондоне. Данное изобретение считается первым электродвигателем, который можно было использовать.

Сравнение характеристик внешне коммутируемых электрических двигателей

Ниже представлены сравнительные характеристики внешне коммутируемых электродвигателей, в ракурсе применения в качестве тяговых электродвигателей в транспортных средствах.

Конструкция

Асинхронная машина имеет статор и ротор, разделённые воздушным зазором. Её активными частями являются обмотки и магнитопровод (сердечник); все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п.

По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым

ротором и с
фазным
ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из пластин электротехнической стали.

Асинхронный двигатель с короткозамкнутым ротором

Короткозамкнутая обмотка ротора, часто называемая «беличье колесо» («беличья клетка») из-за внешней схожести конструкции, состоит из алюминиевых (реже медных, латунных) стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора. Сердечники ротора и статора имеют зубчатую структуру. В машинах малой и средней мощности обмотку обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями «беличьего колеса» отливают короткозамыкающие кольца и торцевые лопасти, осуществляющие вентиляцию машины. В машинах большой мощности «беличье колесо» выполняют из медных стержней, концы которых соединяют с короткозамыкающими кольцами при помощи сварки.

Зачастую пазы ротора или статора делают скошенными для уменьшения высших гармонических ЭДС, вызванных пульсациями магнитного потока из-за наличия зубцов, магнитное сопротивление которых существенно ниже магнитного сопротивления обмотки, а также для снижения шума, вызываемого магнитными причинами.

Для улучшения пусковых характеристик асинхронного электродвигателя с короткозамкнутым ротором, а именно, увеличения пускового момента и уменьшения пускового тока, на роторе ранее применялась так называемая «двойная беличья клетка» из стержней с разными удельными проводимостями, позже стали применять роторы со специальной формой паза (глубокопазные роторы). При этом внешняя от оси вращения часть паза ротора имеет меньшее сечение, чем внутренняя. Это позволяет использовать эффект вытеснения тока, за счет которого увеличивается активное сопротивление обмотки ротора при больших скольжениях (в частности, при пуске).

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Егор Новиков
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий